
Introduction
Theory

Practice
Conclusion

1/24

The Fragmentation Attack in Practice

Andrea Bittau
a.bittau@cs.ucl.ac.uk

September 17, 2005

mailto:a.bittau@cs.ucl.ac.uk

Introduction
Theory

Practice
Conclusion

2/24

Aim

Transmit arbitrary WEP data without knowing the key.

Only requirement: Eavesdrop a single WEP packet.

Introduction
Theory

Practice
Conclusion

3/24

Outline

1 Introduction
WEP
Common Attacks

2 Theory
PRGA & WEPWedgie
Fragmentation

3 Practice
Hardware & Software Limitations
Real-life Attack Example
Script-kiddie Tool

4 Conclusion

Introduction
Theory

Practice
Conclusion

4/24

Wired Equivalent Privacy?
Overview

Bogus implementation of RC4 with a 40-bit shared key.

Only data portion of data packets is encrypted.

Initialization Vector (IV) prepended to key on each
encryption.

IV is transmitted in clear within WEP packets.

Data frame format

802.11 Header CRCFrame Body

IV {

32-bit (IV 3 bytes)

ICV {
CRC32 of user data

User Data

Introduction
Theory

Practice
Conclusion

5/24

Wired Equivalent Privacy??
Encryption

1 Seed: Choose IV (any 24-bit number) and prepend to key.

2 KSA: Run RC4 Key Scheduling Algorithm on seed.

3 PRGA: Run RC4 Pseudo-Random Generation Algorithm.

4 XOR: XOR user data with PRGA.

WEP Encryption

IV + key RC4

{ “PRGA”

0

1

1

1

1

0

⊕

=

0

0

0

1

0

1

Plain text

Cipher text

Introduction
Theory

Practice
Conclusion

6/24

Common Attacks

1 Bruteforce

40-bit key!
ASCII Passphrase.

Microsoft Windows XP requires exactly 5 or 13 characters.

2 KSA

The weak IV attack (aka FMS).
Requires ≈ 300,000–3,000,000 unique IVs.

Many networks don’t have much traffic.
13% probability IVs improve the attack a lot.
aircrack is a good implementation.

3 PRGA

WEP-wedgie: Shared key authentication networks.
PRGA discovery: Bit-flipping, IV collisions, etc.
Fragmentation: Not (yet) public!

Introduction
Theory

Practice
Conclusion

6/24

Common Attacks

1 Bruteforce

40-bit key!
ASCII Passphrase.

Microsoft Windows XP requires exactly 5 or 13 characters.

2 KSA

The weak IV attack (aka FMS).
Requires ≈ 300,000–3,000,000 unique IVs.

Many networks don’t have much traffic.
13% probability IVs improve the attack a lot.
aircrack is a good implementation.

3 PRGA

WEP-wedgie: Shared key authentication networks.
PRGA discovery: Bit-flipping, IV collisions, etc.
Fragmentation: Not (yet) public!

Introduction
Theory

Practice
Conclusion

6/24

Common Attacks

1 Bruteforce

40-bit key!
ASCII Passphrase.

Microsoft Windows XP requires exactly 5 or 13 characters.

2 KSA

The weak IV attack (aka FMS).
Requires ≈ 300,000–3,000,000 unique IVs.

Many networks don’t have much traffic.
13% probability IVs improve the attack a lot.
aircrack is a good implementation.

3 PRGA

WEP-wedgie: Shared key authentication networks.
PRGA discovery: Bit-flipping, IV collisions, etc.
Fragmentation: Not (yet) public!

Introduction
Theory

Practice
Conclusion

7/24

PRGA

If we had PRGA for an IV:

Decrypt all packets which use
that IV (cipher text ⊕ PRGA).

With PRGAs for different IVs,
we can decrypt more packets
(IV dictionary).

Encrypt user data with that IV
(data ⊕ PRGA).

Can always use same IV.

Sample PRGA

0

0

0

1

0

1

1

1

0

0

1

1 PRGA

Plain text

Cipher text

If we intercept cipher text and somehow know the clear text:

Discover PRGA for that IV (cipher text ⊕ clear text).

Introduction
Theory

Practice
Conclusion

7/24

PRGA

If we had PRGA for an IV:

Decrypt all packets which use
that IV (cipher text ⊕ PRGA).

With PRGAs for different IVs,
we can decrypt more packets
(IV dictionary).

Encrypt user data with that IV
(data ⊕ PRGA).

Can always use same IV.

Sample PRGA

0

0

0

1

0

1

1

1

0

0

1

1 PRGA

Plain text

Cipher text

If we intercept cipher text and somehow know the clear text:

Discover PRGA for that IV (cipher text ⊕ clear text).

Introduction
Theory

Practice
Conclusion

8/24

WEP-wedgie
Greets to Anton

Shared key authentication:

1 Access point (AP) sends 128 byte challenge.

2 Client replies with encrypted version of challenge.

Have 128 bytes of PRGA!

(challenge ⊕ encrypted challenge) reveals PRGA for IV client used.

Can encrypt 128− 4 (ICV) arbitrary bytes of data.

Can decrypt first 128 bytes of packets which use that IV.

Optimization

Force clients to disconnect by spoofing de-authentication
requests—management frames not encrypted!

Introduction
Theory

Practice
Conclusion

8/24

WEP-wedgie
Greets to Anton

Shared key authentication:

1 Access point (AP) sends 128 byte challenge.

2 Client replies with encrypted version of challenge.

Have 128 bytes of PRGA!

(challenge ⊕ encrypted challenge) reveals PRGA for IV client used.

Can encrypt 128− 4 (ICV) arbitrary bytes of data.

Can decrypt first 128 bytes of packets which use that IV.

Optimization

Force clients to disconnect by spoofing de-authentication
requests—management frames not encrypted!

Introduction
Theory

Practice
Conclusion

8/24

WEP-wedgie
Greets to Anton

Shared key authentication:

1 Access point (AP) sends 128 byte challenge.

2 Client replies with encrypted version of challenge.

Have 128 bytes of PRGA!

(challenge ⊕ encrypted challenge) reveals PRGA for IV client used.

Can encrypt 128− 4 (ICV) arbitrary bytes of data.

Can decrypt first 128 bytes of packets which use that IV.

Optimization

Force clients to disconnect by spoofing de-authentication
requests—management frames not encrypted!

Introduction
Theory

Practice
Conclusion

9/24

PRGA Discovery
How much clear text do we know?

All data is Logical Link Control (LLC) encapsulated.

Commonly (always) followed by SNAP.

Most likely followed by IP.
At times followed by ARP.

LLC/SNAP header for IP packet

0xAA{

DSAP

0xAA{

SSAP

0x03{

CTRL

0x00 0x00 {
ORG code

0x00 0x08 0x00{
Ether type

ARP packets have 0x0806 as ethernet type!

Distinguishable by fixed and short length.

In general, we can recover at least 8 bytes of PRGA.

Introduction
Theory

Practice
Conclusion

10/24

Fragmentation
Greets: Josh Lackey, h1kari, anton, abaddon

802.11 supports fragmentation at a MAC layer.

Each WEP fragment is encrypted independently.

The Fragmentation Attack

Send arbitrarily long data in 8 byte fragments!

Some details:

Each fragment needs ICV. Only 8− 4 = 4 bytes for real data.

Fragment No. field is 4 bits. Only 16 fragments possible.

Max data length = 24 × 4 = 64.
Can use IP fragmentation too.

Can generate traffic for which response is known, revealing
more PRGA.

Introduction
Theory

Practice
Conclusion

10/24

Fragmentation
Greets: Josh Lackey, h1kari, anton, abaddon

802.11 supports fragmentation at a MAC layer.

Each WEP fragment is encrypted independently.

The Fragmentation Attack

Send arbitrarily long data in 8 byte fragments!

Some details:

Each fragment needs ICV. Only 8− 4 = 4 bytes for real data.

Fragment No. field is 4 bits. Only 16 fragments possible.

Max data length = 24 × 4 = 64.
Can use IP fragmentation too.

Can generate traffic for which response is known, revealing
more PRGA.

Introduction
Theory

Practice
Conclusion

10/24

Fragmentation
Greets: Josh Lackey, h1kari, anton, abaddon

802.11 supports fragmentation at a MAC layer.

Each WEP fragment is encrypted independently.

The Fragmentation Attack

Send arbitrarily long data in 8 byte fragments!

Some details:

Each fragment needs ICV. Only 8− 4 = 4 bytes for real data.

Fragment No. field is 4 bits. Only 16 fragments possible.

Max data length = 24 × 4 = 64.
Can use IP fragmentation too.

Can generate traffic for which response is known, revealing
more PRGA.

Introduction
Theory

Practice
Conclusion

11/24

Outline of Attack

1 Eavesdrop a WEP packet.

2 Recover 8 bytes of PRGA (clear ⊕ WEP).

3 Transmit data in 8 byte fragments using same IV.

Speed up other attacks

1 Send data which generates
traffic.

2 Collect weak IVs.

3 Perform KSA attacks
(FMS).

Pure PRGA attack

1 Send data for which reply is
known.

2 Recover PRGA for more IVs.

3 Slowly build an IV
dictionary.

Introduction
Theory

Practice
Conclusion

11/24

Outline of Attack

1 Eavesdrop a WEP packet.

2 Recover 8 bytes of PRGA (clear ⊕ WEP).

3 Transmit data in 8 byte fragments using same IV.

Speed up other attacks

1 Send data which generates
traffic.

2 Collect weak IVs.

3 Perform KSA attacks
(FMS).

Pure PRGA attack

1 Send data for which reply is
known.

2 Recover PRGA for more IVs.

3 Slowly build an IV
dictionary.

Introduction
Theory

Practice
Conclusion

11/24

Outline of Attack

1 Eavesdrop a WEP packet.

2 Recover 8 bytes of PRGA (clear ⊕ WEP).

3 Transmit data in 8 byte fragments using same IV.

Speed up other attacks

1 Send data which generates
traffic.

2 Collect weak IVs.

3 Perform KSA attacks
(FMS).

Pure PRGA attack

1 Send data for which reply is
known.

2 Recover PRGA for more IVs.

3 Slowly build an IV
dictionary.

Introduction
Theory

Practice
Conclusion

12/24

Hardware

Prism2 (Intersil) based cards.

Host-AP mode. Can send (almost) raw 802.11 frames.

Monitor mode. Firmware passes all frames to kernel.

Firmware overwrites 802.11 header fields such as fragment &
sequence number!

Re-write the fields via debug port! (greets to h1kari)

1 Queue the packet on the card for TX via the normal interface.

2 Locate the packet on the card’s memory via AUX port.

3 Instruct the card to begin TX.
4 After the firmware processed the header, but before it is sent,

overwrite it.

In practice, we always win the race!

Introduction
Theory

Practice
Conclusion

12/24

Hardware

Prism2 (Intersil) based cards.

Host-AP mode. Can send (almost) raw 802.11 frames.

Monitor mode. Firmware passes all frames to kernel.

Firmware overwrites 802.11 header fields such as fragment &
sequence number!

Re-write the fields via debug port! (greets to h1kari)

1 Queue the packet on the card for TX via the normal interface.

2 Locate the packet on the card’s memory via AUX port.

3 Instruct the card to begin TX.
4 After the firmware processed the header, but before it is sent,

overwrite it.

In practice, we always win the race!

Introduction
Theory

Practice
Conclusion

13/24

Software

FreeBSD using wi driver.

Added much of airjack’s (Linux driver) functionality.

AUX overwrite implementation

1 Queue and locate packet with 2 random bytes in MAC addr.

2 Busy wait reading duration until it changes.

3 Overwrite header.

Able to send any 802.11 frame and receive all frames.

Introduction
Theory

Practice
Conclusion

13/24

Software

FreeBSD using wi driver.

Added much of airjack’s (Linux driver) functionality.

AUX overwrite implementation

1 Queue and locate packet with 2 random bytes in MAC addr.

2 Busy wait reading duration until it changes.

3 Overwrite header.

0x08 0x00 0x00 0x00 0x00 0xDE 0xFA 0xCE 0xD0 0x00{

Frame CTRL

{
Duration

{
Address 1

Able to send any 802.11 frame and receive all frames.

Introduction
Theory

Practice
Conclusion

13/24

Software

FreeBSD using wi driver.

Added much of airjack’s (Linux driver) functionality.

AUX overwrite implementation

1 Queue and locate packet with 2 random bytes in MAC addr.

2 Busy wait reading duration until it changes.

3 Overwrite header.

0x08 0x00 0xD5 0x00 0x00 0xDE 0xFA 0xCE 0xD0 0x00{

Frame CTRL

{
Duration

{
Address 1

Able to send any 802.11 frame and receive all frames.

Introduction
Theory

Practice
Conclusion

13/24

Software

FreeBSD using wi driver.

Added much of airjack’s (Linux driver) functionality.

AUX overwrite implementation

1 Queue and locate packet with 2 random bytes in MAC addr.

2 Busy wait reading duration until it changes.

3 Overwrite header.

0x08 0x00 0x7F 0xFF 0x00 0xDE 0xFA 0xCE 0xAA 0xBB{

Frame CTRL

{
Duration

{
Address 1

Able to send any 802.11 frame and receive all frames.

Introduction
Theory

Practice
Conclusion

13/24

Software

FreeBSD using wi driver.

Added much of airjack’s (Linux driver) functionality.

AUX overwrite implementation

1 Queue and locate packet with 2 random bytes in MAC addr.

2 Busy wait reading duration until it changes.

3 Overwrite header.

0x08 0x00 0x7F 0xFF 0x00 0xDE 0xFA 0xCE 0xAA 0xBB{

Frame CTRL

{
Duration

{
Address 1

Able to send any 802.11 frame and receive all frames.

Introduction
Theory

Practice
Conclusion

14/24

The Attack
PRGA determination

Eavesdrop WEP packet and determine 8 bytes of PRGA.

Transmit ARP request (36 bytes) in 9 fragments of 4 data
bytes.

Who has 192.168.0.1 tell 192.168.0.123.

Didn’t get any reply.

Wrong IP network.
But AP relayed the packet (since it’s a broadcast).
Re-encrypted by the AP.
Knowing the contents, we discover 36 bytes of PRGA.

Send ARP request padded with x 0s (in larger fragments).

AP relays the longer ARP request.
Discover 36 + x bytes of PRGA.
Repeat until, say, 1504 bytes of PRGA are known.

Can send 1500 bytes of data without fragmenting.

Introduction
Theory

Practice
Conclusion

14/24

The Attack
PRGA determination

Eavesdrop WEP packet and determine 8 bytes of PRGA.

Transmit ARP request (36 bytes) in 9 fragments of 4 data
bytes.

Who has 192.168.0.1 tell 192.168.0.123.

Didn’t get any reply.

Wrong IP network.
But AP relayed the packet (since it’s a broadcast).
Re-encrypted by the AP.
Knowing the contents, we discover 36 bytes of PRGA.

Send ARP request padded with x 0s (in larger fragments).

AP relays the longer ARP request.
Discover 36 + x bytes of PRGA.
Repeat until, say, 1504 bytes of PRGA are known.

Can send 1500 bytes of data without fragmenting.

Introduction
Theory

Practice
Conclusion

14/24

The Attack
PRGA determination

Eavesdrop WEP packet and determine 8 bytes of PRGA.

Transmit ARP request (36 bytes) in 9 fragments of 4 data
bytes.

Who has 192.168.0.1 tell 192.168.0.123.

Didn’t get any reply.

Wrong IP network.
But AP relayed the packet (since it’s a broadcast).
Re-encrypted by the AP.
Knowing the contents, we discover 36 bytes of PRGA.

Send ARP request padded with x 0s (in larger fragments).

AP relays the longer ARP request.
Discover 36 + x bytes of PRGA.
Repeat until, say, 1504 bytes of PRGA are known.

Can send 1500 bytes of data without fragmenting.

Introduction
Theory

Practice
Conclusion

14/24

The Attack
PRGA determination

Eavesdrop WEP packet and determine 8 bytes of PRGA.

Transmit ARP request (36 bytes) in 9 fragments of 4 data
bytes.

Who has 192.168.0.1 tell 192.168.0.123.

Didn’t get any reply.

Wrong IP network.
But AP relayed the packet (since it’s a broadcast).
Re-encrypted by the AP.
Knowing the contents, we discover 36 bytes of PRGA.

Send ARP request padded with x 0s (in larger fragments).

AP relays the longer ARP request.
Discover 36 + x bytes of PRGA.
Repeat until, say, 1504 bytes of PRGA are known.

Can send 1500 bytes of data without fragmenting.

Introduction
Theory

Practice
Conclusion

14/24

The Attack
PRGA determination

Eavesdrop WEP packet and determine 8 bytes of PRGA.

Transmit ARP request (36 bytes) in 9 fragments of 4 data
bytes.

Who has 192.168.0.1 tell 192.168.0.123.

Didn’t get any reply.

Wrong IP network.
But AP relayed the packet (since it’s a broadcast).
Re-encrypted by the AP.
Knowing the contents, we discover 36 bytes of PRGA.

Send ARP request padded with x 0s (in larger fragments).

AP relays the longer ARP request.
Discover 36 + x bytes of PRGA.
Repeat until, say, 1504 bytes of PRGA are known.

Can send 1500 bytes of data without fragmenting.

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Know whether its ARP request/reply depending on whether its a
broadcast or not.

LLC/SNAP ARP header Src MAC ?? ?? {
Src IP

?? ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Know source MAC—transmitted in clear in 802.11 header!

LLC/SNAP ARP header Src MAC ?? ?? {
Src IP

?? ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Guess first IP byte: 192. Calculate PRGA and send data with it. If
it’s relayed, we are correct.

LLC/SNAP ARP header Src MAC 192 ?? {
Src IP

?? ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Guess second IP byte: 168.

LLC/SNAP ARP header Src MAC 192 168 {
Src IP

?? ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Guess third IP byte: 1.

LLC/SNAP ARP header Src MAC 192 168 {
Src IP

01 ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Obtain third IP byte (after at most 256 tries): 11.

LLC/SNAP ARP header Src MAC 192 168 {
Src IP

11 ??

Introduction
Theory

Practice
Conclusion

15/24

The Attack
IP determination

Send ARP requests for common IP networks and await reply.
No luck—need to be smarter.

Eavesdrop ARP request/reply and try to decrypt it.
Guess next unknown byte of PRGA and send data using it.

If correct, AP will relay data.
Can decrypt next byte of cipher text.

Instead of randomly guessing PRGA, make educated guess on
clear text and calculate PRGA from it.

ARP decryption

Send ARP who has 192.168.11.1 tell 192.168.11.123.

Got reply! IP network is 192.168.11.0.

LLC/SNAP ARP header Src MAC 192 168 {
Src IP

11 ??

Introduction
Theory

Practice
Conclusion

16/24

The Attack
Ping the world

By sending ARP request for 192.168.11.1

Know MAC of router (clear in 802.11 header).

Router knows our MAC/IP pair (ARP backward learning).

Send ICMP echo to a host we own on Internet.

Use “our” source MAC/IP pair.

Use router MAC as destination.

Obtain network’s public IP address from Internet box.

Introduction
Theory

Practice
Conclusion

16/24

The Attack
Ping the world

By sending ARP request for 192.168.11.1

Know MAC of router (clear in 802.11 header).

Router knows our MAC/IP pair (ARP backward learning).

Send ICMP echo to a host we own on Internet.

Use “our” source MAC/IP pair.

Use router MAC as destination.

Obtain network’s public IP address from Internet box.

Introduction
Theory

Practice
Conclusion

17/24

The Attack
Finalizing the attack

Generate traffic to speed up KSA attacks

Cause controlled host on Internet to flood network.

Send ARP requests and ICMPs to broadcast IP.

Could generate ≈ 200 packets/s of traffic.

Key was actually 40-bit alpha-numeric ASCII.

Bruteforcable in ≤ 5 minutes . . .

Login to AP and clean up

Default passwords work great. (root without password here.)

Clear the logs.

Obtain ISP login and send e-mail to customer advising him to
use a VPN. [password is recoverable too . . .]

Introduction
Theory

Practice
Conclusion

17/24

The Attack
Finalizing the attack

Generate traffic to speed up KSA attacks

Cause controlled host on Internet to flood network.

Send ARP requests and ICMPs to broadcast IP.

Could generate ≈ 200 packets/s of traffic.

Key was actually 40-bit alpha-numeric ASCII.

Bruteforcable in ≤ 5 minutes . . .

Login to AP and clean up

Default passwords work great. (root without password here.)

Clear the logs.

Obtain ISP login and send e-mail to customer advising him to
use a VPN. [password is recoverable too . . .]

Introduction
Theory

Practice
Conclusion

18/24

The Tool: wesside
Hardware

Designed for Atheros based cards.

Queue the packet and it shall be sent—No firmware hacks!

Supports 802.11 a/b/g.

FreeBSD ath driver patched to support injection.

Problem with sending 802.11 ACKs. Possibly they are sent too
late—DIFS rather than SIFS.
Work around: Have another card in range with the same MAC
as the attacker. The card will respond to data with ACKs.

Introduction
Theory

Practice
Conclusion

18/24

The Tool: wesside
Hardware

Designed for Atheros based cards.

Queue the packet and it shall be sent—No firmware hacks!

Supports 802.11 a/b/g.

FreeBSD ath driver patched to support injection.

Problem with sending 802.11 ACKs. Possibly they are sent too
late—DIFS rather than SIFS.
Work around: Have another card in range with the same MAC
as the attacker. The card will respond to data with ACKs.

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

19/24

The Tool: wesside
Operation

1 Finds a WEP network and associates—spoofs MAC if AP
does filtering.

2 Eavesdrops a single data packet and discovers at least 128
bytes of PRGA via broadcast relays.

3 Upon capturing an ARP request it discovers the network IP.
Sends 256 PRGA guesses in parallel to different multicast
addresses. Correct guess is in address of relayed packet.

4 Obtains router’s MAC by ARP request to “.1” IP.

5 Contacts Internet host which will flood.

6 Launches aircrack (v2.1—old!) periodically.

IV dictionary built in parallel!

Binds to a TAP interface allowing transmission and reception (if
PRGA is known).

Introduction
Theory

Practice
Conclusion

20/24

The Tool: wesside
Bootstrap time & flood rate

After a single ARP request is eavesdropped:

144 bytes of PRGA are recovered in 1 second.

IP is decrypted in < 30 seconds.

Internet host is contacted in < 1 minute (total time).

Traffic generation rate

Flood source ≈ p/s

802.11b client FTP download. 150
LAN client ping -f (no replies). 550

Internet flood (MTU sized packets). 250
ARP replay. 350
Internet flood (short packets). 950

Full dictionary requires ≈ 224

250 ×
1

3600 ≈ 18.6 hours of flooding.

Introduction
Theory

Practice
Conclusion

20/24

The Tool: wesside
Bootstrap time & flood rate

After a single ARP request is eavesdropped:

144 bytes of PRGA are recovered in 1 second.

IP is decrypted in < 30 seconds.

Internet host is contacted in < 1 minute (total time).

Traffic generation rate

Flood source ≈ p/s

802.11b client FTP download. 150
LAN client ping -f (no replies). 550

Internet flood (MTU sized packets). 250
ARP replay. 350
Internet flood (short packets). 950

Full dictionary requires ≈ 224

250 ×
1

3600 ≈ 18.6 hours of flooding.

Introduction
Theory

Practice
Conclusion

21/24

The Tool: wesside
Key recovery time

Total attack time for /dev/urandom keys

Key Packets Time (m)

2C:CE:FC:1D:2B 100,000 1.93
80:19:B8:3F:C8 200,000 3.83
6F:34:11:BC:A3 200,000 4.30
91:B7:C0:A7:F7 300,000 5.45
3B:07:DA:02:B7 300,000 5.60

EB:A6:50:D0:2B:DA:CC:B7:E1:B7:E8:50:59 1,700,000 30.77
D9:06:CA:9E:EA:B3:18:CD:24:9F:2E:5E:10 2,400,000 42.85
5E:02:F4:83:FE:F6:27:10:21:EC:8E:87:27 2,700,000 49.17
64:AC:EE:55:B7:7E:27:93:09:6B:78:00:78 9,000,000 156.58
41:0A:68:52:5B:BE:C7:64:D7:09:FC:CC:BB 10,000,000 181.28

Introduction
Theory

Practice
Conclusion

23/24

The Tool: wesside
Screen shot

./wesside -s 1.2.3.4

[10:49:50] Setting up ath0... done

[10:49:50] Opened tap device: tap3

[10:49:50] Set tap MAC to: 00:00:DE:FA:CE:0D

[10:49:50] Looking for a victim...

[10:49:53] Found SSID(sorbo) BSS=(00:06:25:FF:D2:29) chan=11

[10:49:53] Authenticated

[10:49:53] Associated (ID=3)

...

Introduction
Theory

Practice
Conclusion

23/24

The Tool: wesside
Screen shot

...

[10:49:54] Got ARP request from (08:00:46:9E:AF:CD)

[10:49:54] Got 8 bytes of prga IV=(42:bc:00)

[10:49:54] Got 36 bytes of prga IV=(43:bc:00)

[10:49:55] Got 144 bytes of prga IV=(52:bc:00)

[10:49:58] Guessing PRGA 5f (IP byte=255)

[10:49:58] Got clear-text byte: 192

[10:50:00] Guessing PRGA 2d (IP byte=175)

[10:50:00] Got clear-text byte: 168

[10:50:09] Guessing PRGA f7 (IP byte=0)

[10:50:09] Got clear-text byte: 1

[10:50:18] Guessing PRGA f7 (IP byte=102)

[10:50:18] Got clear-text byte: 100

[10:50:18] Got IP=(192.168.1.100)

[10:50:18] My IP=(192.168.1.123)

[10:50:18] Sending arp request for: 192.168.1.1

[10:50:18] Got arp reply from (00:06:25:FF:D2:27)

...

Introduction
Theory

Practice
Conclusion

23/24

The Tool: wesside
Screen shot

...

[10:49:54] Got ARP request from (08:00:46:9E:AF:CD)

[10:49:54] Got 8 bytes of prga IV=(42:bc:00)

[10:49:54] Got 36 bytes of prga IV=(43:bc:00)

[10:49:55] Got 144 bytes of prga IV=(52:bc:00)

[10:49:58] Guessing PRGA 5f (IP byte=255)

[10:49:58] Got clear-text byte: 192

[10:50:00] Guessing PRGA 2d (IP byte=175)

[10:50:00] Got clear-text byte: 168

[10:50:09] Guessing PRGA f7 (IP byte=0)

[10:50:09] Got clear-text byte: 1

[10:50:18] Guessing PRGA f7 (IP byte=102)

[10:50:18] Got clear-text byte: 100

[10:50:18] Got IP=(192.168.1.100)

[10:50:18] My IP=(192.168.1.123)

[10:50:18] Sending arp request for: 192.168.1.1

[10:50:18] Got arp reply from (00:06:25:FF:D2:27)

...

Introduction
Theory

Practice
Conclusion

23/24

The Tool: wesside
Screen shot

...

[10:51:28] WEP=000100460 (next crack at 100000) (rate=1448)

[10:51:28] Starting crack PID=17410

[10:52:28] WEP=000185271 (next crack at 200000) (rate=1426)

[10:52:28] Stopping crack PID=17410

[10:52:39] WEP=000201124 (next crack at 200000) (rate=1433)

[10:52:39] Starting crack PID=17412

[10:52:40] WEP=000203778 (next crack at 300000) (rate=1365)

[10:52:41] KEY=(2C:CE:FC:1D:2B)

Owned in 2.85 minutes

#

Introduction
Theory

Practice
Conclusion

24/24

Conclusion and Future Work

Able to transmit arbitrary data on most (all?) 802.11 WEP
networks after having eavesdropped a single data packet.

Future Work:

Higher flood rates (p/s).

Reset IV generator—smaller dictionaries.

A final thought for the adventurous. . .

Assume the AP uses default password for WWW interface.

Connect to WWW and request WEP configuration page.

Decrypt TCP sequence number for connection ACK.

Decrypt contents of page returned—may contain WEP key!

Implementation: http://darkircop.org/frag-0.1.tgz

http://darkircop.org/frag-0.1.tgz

	Introduction
	WEP
	Common Attacks

	Theory
	PRGA & WEPWedgie
	Fragmentation

	Practice
	Hardware & Software Limitations
	Real-life Attack Example
	Script-kiddie Tool

	Conclusion

